Chapter 4—Slow Flight, Stalls, and Spins

Table of Contents
Introduction
Slow Flight
    Flight at Less than Cruise Airspeeds
    Flight at Minimum Controllable Airspeed
Stalls
    Recognition of Stalls
    Fundamentals of Stall Recovery
    Use of Ailerons/Rudder in Stall Recovery
    Stall Characteristics
    Approaches to Stalls (Imminent Stalls)—Power-On or Power-Off
    Full Stalls Power-Off
    Full Stalls Power-On
    Secondary Stall
    Accelerated Stalls
    Cross-Control Stall
    Elevator Trim Stall
Spins
    Spin Procedures
        Entry Phase
        Incipient Phase
        Developed Phase
        Recovery Phase
Intentional Spins
    Weight and Balance Requirements



FULL STALLS POWER-OFF

The practice of power-off stalls is usually performed with normal landing approach conditions in simulation of an accidental stall occurring during landing approaches. Airplanes equipped with flaps and/or retractable landing gear should be in the landing configuration. Airspeed in excess of the normal approach speed should not be carried into a stall entry since it could result in an abnormally nose-high attitude. Before executing these practice stalls, the pilot must be sure the area is clear of other air traffic.

After extending the landing gear, applying carburetor heat (if applicable), and retarding the throttle to idle (or normal approach power), the airplane should be held at a constant altitude in level flight until the airspeed decelerates to that of a normal approach. The airplane should then be smoothly nosed down into the normal approach attitude to maintain that airspeed. Wing flaps should be extended and pitch attitude adjusted to maintain the airspeed.

When the approach attitude and airspeed have stabilized, the airplane’s nose should be smoothly raised to an attitude that will induce a stall. Directional control should be maintained with the rudder, the wings held level by use of the ailerons, and a constant- pitch attitude maintained with the elevator until the stall occurs. The stall will be recognized by clues, such as full up-elevator, high descent rate, uncontrollable nosedown pitching, and possible buffeting.

Recovering from the stall should be accomplished by reducing the angle of attack, releasing back-elevator pressure, and advancing the throttle to maximum allowable power. Right rudder pressure is necessary to overcome the engine torque effects as power is advanced and the nose is being lowered. [Figure 4-5]

The nose should be lowered as necessary to regain flying speed and returned to straight-and-level flight

Establish normal approach Raise nose When stall occurs, reduce angle of attack and add full power. Raise flaps as recommended As flying speed returns, stop descent and establish a climb Climb at V , raise landing gear and remaining flaps, trim Y Level off at desired altitude, set power and trim

Power-off stall and recovery.

Figure 4-5. Power-off stall and recovery.

attitude. After establishing a positive rate of climb, the flaps and landing gear are retracted, as necessary, and when in level flight, the throttle should be returned to cruise power setting. After recovery is complete, a climb or go-around procedure should be initiated, as the situation dictates, to assure a minimum loss of altitude.

Recovery from power-off stalls should also be practiced from shallow banked turns to simulate an inadvertent stall during a turn from base leg to final approach. During the practice of these stalls, care should be taken that the turn continues at a uniform rate until the complete stall occurs. If the power-off turn is not properly coordinated while approaching the stall, wallowing may result when the stall occurs. If the airplane is in a slip, the outer wing may stall first and whip downward abruptly. This does not affect the recovery procedure in any way; the angle of attack must be reduced, the heading maintained, and the wings leveled by coordinated use of the controls. In the practice of turning stalls, no attempt should be made to stall the airplane on a predetermined heading. However, to simulate a turn from base to final approach, the stall normally should be made to occur within a heading change of approximately 90°.

After the stall occurs, the recovery should be made straight ahead with minimum loss of altitude, and accomplished in accordance with the recovery procedure discussed earlier.

Recoveries from power-off stalls should be accomplished both with, and without, the addition of power, and may be initiated either just after the stall occurs, or after the nose has pitched down through the level flight attitude.




Previous | Next


Copyright 2012
PED Publication